Danilo

Danilo

Dec 08, 2023

Group 6 Copy 790
0
References
  • 1. Kumpulainen, P., Cardó, A. V., Somppi, S., Törnqvist, H., Väätäjä, H., Majaranta, P., Gizatdinova, Y., Hoog Antink, C., Surakka, V., Kujala, M. V., Vainio, O., & Vehkaoja, A. (2021). Dog behaviour classification with movement sensors placed on the harness and the collar. Applied Animal Behaviour Science, 241, 105393. https://doi.org/10.1016/j.applanim.2021.105393
  • 2. Vehkaoja, A., Somppi, S., Törnqvist, H., Valldeoriola Cardó, A., Kumpulainen, P., Väätäjä, H., Majaranta, P., Surakka, V., Kujala, M. V., & Vainio, O. (2022). Description of movement sensor dataset for dog behavior classification. Data in Brief, 40, 107822. https://doi.org/10.1016/j.dib.2022.107822
  • 3. Vehkaoja, Antti; Somppi, Sanni; Törnqvist, Heini; Valldeoriola Cardó, Anna; Kumpulainen, Pekka; Väätäjä, Heli; Majaranta, Päivi; Surakka, Veikko; Kujala, Miiamaaria; Vainio, Outi (2021), “Movement Sensor Dataset for Dog Behavior Classification”, Mendeley Data, V1, doi: 10.17632/vxhx934tbn.1
    Please wait...

    About This Project

    Edge machine learning refers to the process of running embedded ML models on site using devices capable of collecting, processing, and recognizing patterns within collections of raw data. This project seeks to train one of such devices (Nicla SenseME) with dog data from the Earth Species' Bio-logger Ethogram Benchmark (BEBE). The board will be used as a smart dog collar, with its ML inferences controlling haptics vibrations in a bracelet wore by a person.

    Blast off!

    Browse Other Projects on Experiment

    Related Projects

    Designing ultrastable carbonic anhydrase with deep generative models and high-throughput assays

    To minimize the impact of CO2 emissions on life on earth, we need technologies for carbon capture exceeding...

    Developing dNinja, an open-source digital PCR

    We have been making open-source PCR machines for decade. 1st generation thermal cycler NinjaPCR was released...

    Analog Genetic Circuits for Interactive Learning

    Can you mimic a biological system using electrical analogs? Could that electrical system be so interactive...

    Backer Badge Funded

    A computer science project funded by 5 people