About
Previously at the Allen Institute for Brain Science, my research was focused on understanding basic building blocks (gene, circuit) of brains through industrialized brain mapping projects. In particular, I pioneered a systematic circuit analysis and orchestrated interdisciplinary teams to build the foundational Mouse Connectivity Atlas. The completion of the atlas and Nature article (Oh et al., Nature 2014) garnered broad media attention, and was ranked 18th in the Discover Magazine’s top 100 stories of 2014 (Discover Magazine, NBC news, New York Times, etc.).
With nearly a decade of experience planning, building, and analyzing large-scale brain maps, I now desire to apply my skill sets to address brain diseases. At Grace Medical Institute, I envision the use of existing and future brain maps to overcome critical barriers in disease research and drug development for a broad array of central nervous system (CNS) disorders. That is, to leverage brain maps of genes and circuits to (1) identify the most relevant scientific questions and (2) explore disease-specific alterations in the brain.
I received my B.S. in chemistry and M.S. in biochemistry and molecular biology from Seoul National University in Seoul, Korea, and Ph.D. in biomedical sciences from the University of Massachusetts Medical School, where I studied the molecular mechanism of aging using the tiny worm, called C. elegans, as a model system. I was also trained as a postdoctoral fellow under the supervision of two Nobel laureates, Drs. Michael Brown and Joseph Goldstein at the UT Southwestern Medical Center, where I investigated the role of hypothalamic neurons in regulating feeding and energy homeostasis.
Joined
June 2017