More
I became involved in the production of Hyperpolarized Xenon gas during my graduate research at the University of Utah. I developed a Xenon Polarizer for Pacific Northwest National Lab. During that time, I also developed a simple, Laminar flow model of the polarizer production environment using Maple mathematics language.
After receiving my doctorate from the University of Utah, I worked as a post-doctoral research associate at Pacific Northwestern National Lab. There, I developed a new device that allowed HP Xe to be dissolved into high temperature fluids.
Most recently, I was an associate in research at Duke University Medical Center where I began work on a 3D simulation of HP Xe gas production. The motivation for development of the simulation came from an attempt to explain the poor efficiencies obtain by current generation xenon polarizers. I also supported multiple small animal and clinical MRI lung studies using hyperpolarized xenon.
Currently, my full-time job is working as a hazards analysis engineer for Northrop Grumman. At night, I consult for Polarean, Inc., a small start-up company developing commercial polarizers. I spend my free time building FEM models of HP Xe gas production setups.
Additional professional information can be found on LinkedIn or my personal website.
May 2018